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Abstract. The crystal structure and phase stability of the group-V elements As and Sb has been 
investigated by total-enerB calcularians within the local-density approximation (LDA), without 
and including generalized gradient corredons (ccc). We show that, contrary to the case of the 
group-VI elements Se and Te. where the LDA predicts crystal Structures with a much smaller 
difference between the short invachain bonds and the IoDg inter-chain bonds lhan is observed, 
for AS and Sb the LDA leads to equilibrium Structures in reasonable. or even good, agreement 
with experiment and describes the pressuwinduced phase transition to a simple cubic structure 
in Sb (but not in As) very well. The GGC corrections show a tendency to overshoot and do 
not improve agreement with experiment. In both cxses the main effect of the GGC is to add an 
isotropic pressure to the system, while the local elecaonic and bonding properties at constant 
volume remain unchanged. 

1. Introduction 

In recent years there has been considerable interest in developing techniques that allow 
one to overcome the well known limitations of the local density approximation (LDA) 
to the density functional theory [1,2] of the interacting many-electron system. Foremost 
among these limitations is the tendency of the LDA to overestimate the cohesive energy, the 
equilibrium density and the bulk modulus [24] .  Generalized gradient corrections [5-7] to 
the LDA exchange-correlation functional represent an attempt to cure the deficiencies of the 
approach by incorporating lowest-order gradient corrections, while respecting the known 
sum rules for the exchange hole [8,9]. It has been shown that in some cases the GGC 
improve the energetics of s, p-bonded metals and semiconductors [1&12] with respect to 
the LDA, but there is certainly a tendency to overcorrect. For transition metals a general 
tendency towards increased lattice constants was found [13,14], but this does not lead to 
a systematic improvement over the LDA. Relatively little is known about the effect of the 
GGC on predictions of crystalline phase stability. For the tetravalent metals Si and Ge it 
has been shown [I51 that the GGC lead to improved predictions for the critical pressure 
where the transition from the four-coordinated semiconducting phase to the six-coordinated 
metallic phase occurs. On the other hand, it was found that the GGC do not improve the 
prediction of the relative stability of the layered graphitic versus the cubic diamond phase 
in carbon [16]. An interesting case, studied in some detail, is offered by the helical phases 
of Se and Te [17-191. The equilibrium structures of these elements may be considered as 
arising from a Peierls distortion of the six-coordinated simple cubic structure: the two-thirds 
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filled p band is unstable against a trimerization of the lattice, leading to the formation of two 
strong intra-chain and four weak inter-chain bonds [ZO]. LDA calculations [21] exaggerate 
the strength of the weak bonds, leading to a structure that is much more isotropic than is 
observed experimentally. Incorporation of the GGC greatly improves the prediction of the 
crystal structure and the cohesive properties of Se, but overcorrects the LDA error in the 
case of Te [IS]. An important point to note is that the main effect of the CGC is to add an 
isotropic contribution to the internal pressure of the system (favouring expansion), whereas 
at constant volume the electronic structure and bonding properties are almost unchanged. 
In the present work we extend our studies of the effect of the GGC on crystal-structure 
predictions to the pentavalent elements As and Sb, whose zero-pressure structures result 
again from a Peierls distortion of the simple cubic lattice. 

2. Theory 

We have performed ab initio pseudopotential calculations of the electronic structure and total 
energies of As and Sb within the LDA and, in addition, incorporated CCC in the Perdew-Wang 
(PW) [5] and Perdew-Becke (PE) [6,7] formulations. The calculations were performed using 
the VAMP (Vienna ab initio molecular-dynamics program) code [22,23]. VAMP performs a 
variational solution of the KohnSham equations within the LDA (we use the Ceperley-Alder 
exchange-correlation functional as parametrized by Perdew and Zunger [24]) or within the 
LDA t ccc on the basis of a preconditioned band-by-band conjugabgradient approach. The 
equilibrium atomic structure is determined via a static or dynamic optimization of the atomic 
coordinates and of the cell geomehy using Hellmann-Feynman forces and macroscopic 
stresses, via quasi-Newton and molecular dynamics algorithms, respectively. The electron- 
ion interaction is described by optimized ultra-soft pseudopotentials [Z, 261 which ensure 
rapid plane-wave convergence. In each case we have used the GGC consistently, i.e. for 
the construction of the pseudopotential as well as for the bulk calculations. We noticed 
that in some cases a non-self-consistent treatment of the CGC, i.e. using them only in the 
valence-electron exchange-correlation functional, can lead to better results. For As and 
Sb we used a cut-off of E, = 150eV. Even with a reduced cut-off of E, = 120eV the 
equilibrium structural parameters remain unchanged. The calculations were performed with 
a grid of 10 x 10 x 10 special points (corresponding to llOk points in the irreducible 
part of the Brillouin zone). We used a finite-temperature version of the LDA, with the 
fractional occupation of the eigenstates approximated by a Gaussian broadening of the one- 
electron energies with a = 0.1 eV, and the corresponding expression for the electronic 
entropy [18]. For the calculation of the structural energy differences, the internal energy E 
has been extrapolated to U + 0. For further technical details we refer the interested reader 
to [18.23]. 

3. Results 

The A7 crystal structure of arsenic and antimony may be described as distorted simple cubic 
(sc), in which there is an internal displacement of the two facecentred-cubic sublattices 
along the [ l l l ]  direction 1271. The resulting structure has trigonal symmetry and there are 
two degrees of freedom in addition to the volume. One is the internal parameter U defining 
the relative position of the two sublattices (the displacement vector is d = Zu(lIl)/&), 
with U = in the A7 lattice. The second parameter is the axial in the SC limit and U < 
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Figure 1. Energy E and pressure p in the trigonal A7 and simple cubic svucbres of As, 
calculated in the LDA with the Ceperley-Alder CA parametrization of the exchange-correlation 
functional and the LDA t GGc(PB) approximation. The symbols mark the calculated paints. the 
full C U N ~ S  the Murnaghan fits to energies and pressures, respectively. 

ratio c /a  of the hexagonal cell. In the cubic limit, c/a = 4 and it is larger for the distorted 
structures. The distortion from cubic symmetry is caused by the half-filled p band, which 
makes the sc lattice unstable against a PeierIs distortion [20]. 

3.I. Equilibrium properries 

Our results for the calculated equilibrium sttuctures and cohesive properties are compiled 
in table 1 and figure 1. The equilibrium structure has been determined by simultaneous 
optimization of the parameters of the unit cell and of the internal structural parameter U ,  

performing the necessary corrections for the Pulay stresses. To obtain information on the 
change of the structure under pressure, and to obtain the bulk modulus, we have in addition 
performed a series of calculations at fixed volume and optimized the axial ratio c / a  and 
the parameter U .  The energies and pressures resulting from these calculations were fitted 
by a Murnaghan equation of state 1281. The minimum determined from the Murnaghan fit 
agrees well with that obtained by direct relaxation of the atomic volume. 

For As, the LDA result for the equilibrium volume, structure and bulk modulus agrees 
well with previous LDA calculations [29-311. Compared with experiment, the atomic volume 
is slightly too small, the bulk modulus is overestimated, and the relaxed structural parameters 
are somewhat closer to the cubic limit than in the experimental structure. This indicates 
that, as for the chalcogenide elements, the calculated Peierls distortion is slightly too small. 
The somewhat larger equilibrium volume resulting from linearized augmented plane-wave 
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Table 1. Calculated equilibrium structure (atomic volume 62. axial ratio cla, internal S t N C t d  
parameter U, ratio dzjdt of intraplanar and interplanar distances, bond angle 8, energy difference 
A E  relative to lhe sC phase. cohesive energy E and bulk modulus B )  of vigonal As and Sb 
compared wilh exPrimenL 

20.70 2.67 
23.45 2.92 
27.49 2.95 
20.95 2.61 
21.80 2.69 
21.52 2.81 
21.30 2.78 

30.14 2.48 
33.34 2.67 
34.22 288 

2.60 
30.21 2.62 

0.230 
0.225 
0.224 
0.230 
0.229 
0.227 
0.228 

0.233 
0.230 
0.229 
0.235 
0.233 

1.19 
1.27 
1.30 
1.19 
1.21 
1.24 
1.23 

1.13 
1.18 
1.24 
1.14 
1.16 

96.7 0.10 
96.6 0.16 
96.7 
96.7 0.12 
96.6 0.07 
96.6 
96.4 

97.5 0.06 
96.6 0.09 
96.9 
95.0 
95.8 

4.05 0.52 
292  0.36 

0.43 
3.78 (0.77) 

2.96 0.38 

3.68 0.37 
2.60 0.22 

0.41 

a WA (Cepcrley-Alder functional) present work. 
W A  t Perdew-Becke GGC present work. 

E LDA t Perdew-Wang ooc present work. 
W-WA calculation (Ceprley-Alder functional) [29]. 
LAPW-WA (Wigner exchange functional) calculation D I ] .  The value for the bulk modulus is not very accurate, 

because the Slructural parameters have not been relaxed as a funclion of the atomic volume. 
f PILLDA (wiper exchange functional) calculation 1321. 
E Exp. [331. 

Exp. [3&36]. 

(LAPW) calculations [31] (performed in the muffin-tin approximation to the potential) is 
a consequence of the use of the Wigner exchange functional, which always yields lower 
densities than the Ceperley-Alder functional used in pseudopotential calculations. The 
calculated energy differences relative to the sc smcture is in good agreement with the 
pseudopotential calculation of Needs and co-workers [29,30], but larger than the LAPW 
result. That there should be a difference in the structural energies calculated using the PP 
and LAPW methods is not surprising: in the A7 smcture all the strong bonds are oriented to 
one side of the atom, and the weak bonds to the other side. In the muffin-tin approximation, 
this anisotropy in the charge distribution is smeared out due to the spherical averaging. In the 
previous PP calculations, the structural energy difference turned out to be strongly dependent 
on convergence with respect to the plane-wave cut-off and to the k-point sampling. In 
our approach these problems are solved by the use of ultrasoft potentials and a very fine 
integration mesh. Under pressure, the Peierls distortion and the energy difference relative 
to the sc structure decrease, but the structure remains cubic up to the smallest atomic 
volume (Q = 17 A') considered in the calculations. This again is in contrast to the LAPW 
result, predicting an A7 --f sc transition under moderate compression. The prediction of a 
pressure-induced phase transition by the LAW calculations may result from the fact that the 
parameters U and cla were not allowed to change under pressure. Hence the calculation 
does not consider the lowest-energy A7 structure. 

Inclusion of the ccc improves the results for the binding energy and the bulk modulus; 
for the equilibrium atomic volume and structure the PEGCC overshoots, and this is even 
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more pronounced when the PW form of the cicC is used. The stabilization of the Peierls 
distortion by the GGC ( A E  relative to the SC shucture increases from 0.1 eVatom-l to 
0.16eVatom-'; see table 1) confirms the result obtained for the chalcogenide elements. 

For Sb, the LDA result for the atomic volume and bulk modulus is in good agreement 
with experiment; for the crystal structure the Peierls distortion is slightly underestimated. 
In this case, the GCc definitely overcorrect the good LDA results, and this effect is larger 
for the PW form than for the PB fonn. 
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Figure 2 Variation of the ratio dx/dl of the lengths d! and dz of healayer and intedayer 
distances and of Le axial ratio c/a as a function of the atomic volume for trigonal As (a) and 
Sb (6). Squares: LDA in the Ceperley-Alder (CA) pmeh'ization; diamonds: U)A t occ(~8);  
triangles: WA + ccc(pw). The open symbols represent the results obtained at fixed volume. The 
full symbols represent the results of a simultaneous relaxation of S~NCNR and volume. The 
stars represent apuimenl. 

3.2. Phase transition under pressure 

Figure 2 shows the variation of the axial ratio and of the ratio of the second- and first- 
neighbour distances (i.e. the lengths of the weak and strong bonds) with the atomic volume. 
Independent of the treatment of exchange-correlation effects, the shucture becomes more 
isotropic under compression. However, atfued atomic volume the inclusion of the ccc does 
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not change the crystal structure, confirming the result we had obtained earlier for the case 
of the chalcogenides. Hence the main effect of the GGC is to add an isotropic contribution 
to the internal pressure, favouring expansion. That the effect of the GGC is isotropic can 
be understood on the basis of a result presented by Juan and Kaxiras [12], who analysed 
the difference of the LDA and LDA t GGC exchangecorrelation energy functionals and 
potentials for the case of Si. It was shown that the most important differences occur in the 
core region; this is not surprising, 'since the density varies significantly in this region. Even 
in the pseudopotential approximation, where the pseudo-electron densities in the core region 
are small, the gradients are still large. Hence the effect of the GGC is mainly isotropic. 

FIgure 3. Variation of the binding energy of Sb as a 
function of the axial mtio e/= at three fixed atomic 

-2.60 volumes close to the A1-SC phase Wansition. The 
symbols mark the relaxed values (with respect to U at 
fixed c/a) (open symbols) and with respect to U and 

-2.59 L 235 2.45 2.55 da 2.15 2.75 c/o simultanenusly (full symbols); the lines are simply 
there as a guide to the eye. 

A pressure-induced A7-SC phase transition has been reported [37] for Sb (but not for 
As), but more recent experiments have claimed that such a transition occurs only under non- 
hydrostatic pressure [38]. Figure 1 shows that for Sb the Peierls distortion and the structural 
energy difference A7-X decrease rapidly under pressure and vanish for Q .c 26A . For 
smaller atomic volumes the relaxation of the structural parameters leads to a sc stlllcture; 
the Peierls-distorted structure is unstable. It is interesting that the axial ratio converges to 
c fa = 6 before the parameter U describing the relative displacement of the two sublattices 
converges to U = (see figure 2). Figure 3 shows the variation of the energy with the axial 
ratioatthreedifferentatomicvolumes(Q= 33.38. ,31.08.3and29.58.3). At Q = 33.3A3, 
the energy has a single minimum at an axial ratio of c / a  = 2.69, at Q = 31 .O A the energy 
has two minima at c / a  = 2.57 and c / a  = &, and at Q = 29.5A3 a single minimum at 
c / a  - 6. The corresponding equilibrium values of U at the optimal c / a  are U = 0.229, 
0.232 and 0.236, respectively. They vary only little with c / a .  The simple cubic limit 

3 

3 

- 3  
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of U = i is reached only at 52 = 26.0A3. There is no difference between the LDA and 
LDA t GGC results (see figure 2). The transition pressure is estimated from the condition that 
the pressure be equal in both phases, with the result pc - 40kbar (LDA) and p c  - 70kbar 
(LDA + oGc(PB)). The LDA + GGC value agrees with the transition pressure reported by 
Kabalkina and co-workers [37]. However, a quantitative estimate is difficult because the 
transition is almost continuous. 

An indication that the transition is first order, as found in experiment [37], can be derived 
only from the abrupt variation of U and dZ/dl between C2 = 27.9A3 and 52 = 26.0A3. 
Experimentally, the change of volume at the transition has been estimated to be 0.5%. To 
derive a theoretical estimate for the discontinuity of the volume, it would be necessary 
to perform the calculations of A E  on a very fine mesh of atomic volumes. At these 
compressions, c/a has already assumed the cubic value and the transition occurs via a change 
of U only. That in stabilizing the A7 structure the sublattice displacements dominate over the 
rhombohedral shear agrees with the pseudopotential calculations of Chang and Cohen [32], 
who predicted a nearly continuous phase transition driven by a longitudinal acoustic R- 
point phonon of the sc phase. The phonon frequency is calculated to be imaginary for 
C2/Qeq. > 0.86. The reduced volume for the transition agrees with our result; no pressure 
has been calculated. 

For As, an A7-SC phase transition is not predicted for pressures smaller than 200kbar 
(LDA) and 300kbar (LDA + GGC(PB)), i.e. at pressures that are much larger than the A 7 S C  
transition pressures measured for Sb and P (pc = 70 kbar and 1 IOkbar, respectively [37,39]. 
At these pressures, the differences between the A7 and sc structures are already quite small 
(&/dl - 1.08, c/a - & - 0.04) and an almost continuous transition should occur at 
slightly larger pressure. The increased stability of the A7 phase for As compared to Sb and 
P may be attributed to the stronger non-locality of the electron-ion potential: in As the 4s 
electrons partially penetrate the 3d core and hence experience a more attractive potential 
than the 4p electrons. This results in a larger s-p separation and a reduced s-p hybridization 
in As, which contributes to a stabilization of the Peierls distortion arising from the formation 
of covalent (ppo) bonds. 

3.3. Electronic structure 
Figure 4 shows the results for the electronic densities of states (DOS) of Sb at the equilibrium 
volumes of the LDA, LDA t GGC(PB) and LDA + GGC(PW) calculations and close to the A7-SC 
phase transition. The band structure is characterized by an s-band below - 5.5 eV binding 
energy and a p band close to the Fermi level. Both bands display the characteristic Peierls 
gap in the middle of the band, coincident with the bonding-antibonding splitting. The Fermi 
energy falls into the Peierls gap of the p band. The effect of the GGC is again mainly a 
volume effect: it reduces the band width of the Peierls-split subbands and slightly increases 
the internal s-p gap, but not the Peierls gap at the Fermi level. At fixed volume the DOS 
is virtually unchanged. The calculated DOS is in very good agreement with the earlier 
calculations (29-311 (apart from a somewhat lower DOS in the pseudogap at the Fermi 
level, which may be a consequence of the finer k-space sampling in our calculations) and 
for both As and Sb with the measured photoemission spectra [40,41]. 

Under pressure the widths of the subbands gradually increase, but the Peierls gaps do 
not disappear until the phase transformation has been completed. Figure 4(b) shows the 
density of states close to the phase transition: at a voIume where the A7 structure with 
c/a # .,& and U <: 4 is marginally stable, at a volume where c/a = & but U c $. and 
in the simple cubic phase. Even in the sc high-pressure phase at CZ = 26.0 8, , a bonding- 
antibonding pseudogap (minimum in the DOS) subsists in the middle of both the s and the 

3 
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Figure 4. Electronic densities of states of Sb for the equilibrium stlllchlres obtained in the 
WA(CA) and LDA + GGC(QB Pw) approximations (a) and close to the Alsc phasc transition in 
relaxed states shown in figure 3: the compressed ~i phase, the intermediate state and the sc 
high-pressure phase (calculated in the WA + WPB) approximation). 

p band. This shows that as the structural phase transition the semimetal-metal transition is 
quasi-continuous. 

4. Conclusions 

Our investigations of the influence of GGC on the crystal structures of the low-symmetry 
phases of the pnictide and chalcogenide elements lead to concordant results: at fixed volume, 
the inclusion of GGC changes neither the predickd atomic structure nor the electronic band 
structure, and the changes of the crystal structures and band structures as a function of 
volume are identical with and without GGC. The GGC, however, influence the equilibrium 
atomic volume by adding an isotropic contribution to the internal pressures, favouring 
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expansion. For Se, this leads to an important improvement over the LDA; for As and Te 
the GGC overcorrect the LDA error, with the LDA and LDA .t GGC results about equidistant 
from experiment; for Sb the LDA is already a good approximation and the agreement with 
experiment is reduced by adding GGC. The predicted transition pressure for the AI-sc phase 
transition, however, is more realistic with than without the GGC. The overshoot effect can 
be reduced by using the GGC only for the solid state, but not for the construction of the 
pseudopotential: however, we do not consider this to be a justifiable procedure. 

It is still very difficult to see a consistent trend in the applications of GGC to the 
calculations of cohesive and structural properties. Korling and Haglund [14] found that for 
the 3d transition metals the GGC lead to important improvements, but for the 4d and 5d 
metals the GGC definitely overshoot. For the s, p-bonded elements the situation is even 
more confusing: even for the simple case of face-centred cubic AI, there are conflicting 
reports that the addition of GGC either increases [ 121 the lattice constant by 8% or lowers 
it by 0.5% [IO]. There are also conflicting reports as to whether the GGC change [lo] the 
prediction for the gap in semiconductors or do not affect it at all [I 11. The present study 
represents an attempt to bring some systematics into these investigations: we find that the 
GGc become less reliable with increasing atomic number and with increasing isotropy of 
the crystal structure. The first point would seem to agree with the conclusion drawn from 
the study of transition metals, but evidently much further work is needed. 
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